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A general, rigorous, and extremely simple method of analyzing nucleon-nucleon and nucleon-antinucleon 
total cross sections is presented. The method is valid for all energies and provides a simple link between the 
experimental quantities of fundamental physical interest. It is particularly appropriate in the high-energy 
region and, as an example, is applied to the Regge model. The results are derived by using the concept of 
crossing and a weak form of Mandelstam analyticity, and depend upon the observation that the NN and 
Nit total cross sections can be expressed in terms of a single spin-triplet NN —» NN transition amplitude. 
A basic ingredient is the experimental knowledge of <rpn or, equivalently, <TnP. A primary aim of this work is to 
encourage the experimental measurement of these cross sections. 

I. INTRODUCTION 

THE use of the Mandelstam representation in 
strong-interaction physics has focused attention 

on the importance of the concept of crossing, i.e., of 
the interrelation between the various channels reached 
by analytic continuation from the region of a given 
process. In fact, it is probably true to say that (with 
the exception of those cases in which direct channel 
resonances dominate) almost all calculations in strong-
interaction physics, and in particular in Regge-type 
models, either contain or evaluate as primary quantities 
the scattering amplitudes in the t channel. 

At the same time it is well known that the study of 
nucleon-nucleon or nucleon-antinucleon scattering is 
greatly complicated by the spin-J nature of the particles 
involved. Thus the scattering amplitude in each isotopic 
spin state is found to depend on five independent scalar 
functions of the energy and the angle of scattering. 

The purpose of this paper is to point out a general, 
rigorous, and extremely simple method of analyzing 
NN and NN total cross sections. In this method we 
take advantage of the observation in the first paragraph 
and introduce a set of four experimental quantities, 
linear combinations of <rpp, apn, app, and apn, which 
play a fundamental role because they are directly 
related to a single /-channel scattering amplitude. 

The principal observation is that the total (un-
polarized) NN or NN cross sections in the s channel 
can be expressed in terms of only one of the five 
NN—+NN spin-transition amplitudes (/i through f& 
in the notation of Ref. 1) in the / channel. This tran
sition can take place with parity P = ± l and isospin 
1 = 0, 1. Each of the suitably chosen linear combinations 
of the four independent experimental cross sections 
then corresponds to a single /-channel transition with 
given P and / . A study of the energy dependence of 
these combinations should then prove extremely useful 
in the analysis and testing of any theoretical model of 
NN or NN scattering. 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

1 M. L. Goldberger, M. T. Grisaru, S. W. Mac Dowell, and 
D. Y. Wong, Phys. Rev. 120, 2250 (1960). 

I t is perhaps worth emphasizing that although we 
illustrate the method by applying it to the (/ channel) 
Regge model, the basic results [Eqs. (24)] are com
pletely general, are valid at all energies, and depend 
only on the optical theorem and a rather weak form of 
Mandelstam analyticity. 

The analysis discussed here requires an experimental 
knowledge of the pn (or equivalently np) total cross 
section. I t is hoped that the simplicity and usefulness 
of the method of analysis will stimulate a vigorous 
experimental attack on this important physical 
quantity. 

In Sec. I I , we go through the algebra leading to our 
results. The reader who is solely interested in using the 
proposed method of analysis can safely proceed to 
Eq. (24). 

In Sec. I l l , we illustrate the method briefly by 
applying it to the Regge model. 

II. DERIVATION OF RESULTS 

Consider NN scattering in the s channel. We shall 
use the usual Mandelstam variables 

and 

j = 4 ( w 2 + £ 2 ) , 

/ = - 2 ^ 2 ( l - c o s 0 ) , 

#=-2^2( l+cos0), 

(1) 

where p is the momentum in the center of mass of the 
two nucleons. In terms of the laboratory system kinetic 
energy T, we have 

s = 4:M2-\-2mT 
and 

p^{mT/2fl\ (2) 

Following the notation of Ref. 1, we denote by 
<t>h ''' J $5 the five helicity amplitudes in the 5 channel. 
With the optical theorem we can relate the total 
unpolarized cross section to the imaginary parts of the 
forward, purely elastic amplitude. For a given isospin / , 
we have 

< W = (2T/P) rm[0i ' ( /=O)+tfa7(*=O)] f (3) 

as only <f>\ and <f>z pertain to transitions in which neither 
nucleon flips its spin. 
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The next step is to use the well-known crossing venience.) The simplest way to do this is to introduce 
matrices1 to express the s channel fa in terms of singlet as auxiliary quantities the five scalar amplitudes 
and triplet NN transition amplitudes fx through / 5 of Gi, • • •, G5. From Eqs. (4.23) of Ref. 1, we obtain 

the t channel. (Note that, in the notation of Ref. 1, 
these would be / i , • • • , / & ; we omit the bars for con- where 

An — -
4W 1/2 

4m2 (u—t) 

t+u 

(u—t)(s—t—u) 

t+u 

4m2 

-Am2 

fa1 — A ijGf, 

t+u 

t+u 

(4) 

t+u 
Sm2t 

2u 
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t+u 

(5) 

Also from Eqs. (2.9) and (4.24) of Ref. 1, we obtain 

(Note that we are using the notation u instead of i of Ref. 1.) And from Eq. (4.27) of Ref. 1, 

where 

and 

B- •<-.' o 
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Interchanging t and u in Eq. (7) and then using Eq. (6), we obtain 

G/foM) = ( - ly+'AijB^G/' (t,s,u). 

Equation (10) relates the G functions of the s channel to the G functions of the / channel. Combining Eqs. 
(10), (4), and (5), we obtain 

* / = [ ( - l)V4W1 / 2]^'C< iG/ ,(M,«), 
where 

(6) 

(7) 

(8) 

(9) 

(10) 
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(12) 
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Equation (11) gives the relation between the helicity amplitudes of the s channel and the G functions of the t 
channel. Using the relations similar to Eq. (4.33) of Ref. 1 (written for the t channel), we relate the G functions 
of the t channel to the / functions of the / channel. The result is 

where 

D--
t{s+u) 

s+u 

0 

0 

0 

0 

Gf 

0 

0 

0 

0 

f 

\t,s,u)--

—Am2 

0 
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-t 
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t2 
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0 

-t 
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(13) 

(14) 

s+u 4m2 {s+u) 

Combining Eqs. (13) and (14) with (11) and (12), we finally obtain the desired relation between the helicity 
amplitudes of the s channel and the / functions of the t channel. The result is 

where 

i-iyB11' 

'\sy/2(t+u)(s+u) 
(15) 

Kii= 

(s+u)(t+u) 

(s+u)(t+u) 
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st 
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(16) 

I t is important to realize that a crossing relation of 
the type of Eq. (15) is completely meaningless, unless 
one is given a prescription for analytic continuation of 
the fj from the ^-channel region in which they are 
defined to the ^-channel region in which they are 
needed. In our particular case this is a trivial matter 
because the matrix D given in Eq. (14), which relates 
the fj to the G functions [see Eq. (13)], is free of 
branch-point singularities, and therefore the / functions 
have the same analytic properties as the scalar 
Mandelstam functions G*. 

We now combine Eqs. (15) and (3) to obtain 

4TT 

< W ( * ) = — ( - l ) z £ J 7 ' I m / 2 ' ' ( ^ 0 ; * ) . (17) 

Thus the total ^-channel cross sectioji depends only on 
f2, one of the spin-triplet NN —» NN transition ampli
tudes. Because f2 is a spin-triplet transition, the 
quantum numbers characterizing the transition must 
satisfy2 

CP = PG{-\y^ + \. (18) 

Furthermore, the partial-wave amplitudes fuJ con
tributing to f2 all have1 

J = Z d = l 3 

so that 

P(s) 1/2 

p(-iy=-p(-i)L=p2=+i. (19) 

Equations (18) and (19) show that both C and G are 

2 1 . J. Muzinich, Phys. Rev. 130, 1571 (1963), 
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redundant in describing the transition and that the 
" / parity" or signature (—1)J is equivalent to P. 
Hence the transition is completely characterized by 
the four distinct sets of quantum numbers given by 
P = ± l and I' = Q or 1. We shall therefore define a set 
of four functions 

g(PJ';s) = -PlmMP,I';t = 0,s), 

( P = = b , / ' = 0 o r l ) . (20) 

(The factor — P is merely for the sake of convenience.) 
Substituting Eq. (20) in Eq. (17), we obtain 

4?r 
W ( * ) = — — ( - D / + 1 E B"'Pg(PJ';s), (21) 

p(s)112 i'=o,i 
r p = ± i 

from which we have explicitly 

2TT 
(rPp(s) = ——-[g(+, 0;s)-g(-, 0; s) 

p(s)1'2 

-g(-,l;s)+g(+,lis)l (22a) 
and 

2TT 
^PnW = - — — [ g ( + , 0; j ) - g ( - , 0; $) 

+ * ( - , ! ;*)-*(+, i;*)]. (22b) 

I t is now a simple matter to obtain <jpV and apn or, 
equivalently, <rPn. For example, the contribution of a 
transition determined by g{PJf; s) to <rPp(j) is 

[2x /^( . ) 1 ' 2 ]Pg(P ,7 ' ; , ) . 

By application of the line-reversal argument of Sharp 
and Wagner,3 the contribution of this transition to 
app is obtained by using the charge-conjugation 
operator, so that the contribution to app is 

[_2ir/p(syi>lg(P,I';s), 

because here we have C=P. We get therefore 

2TT 
<rpp(s) = ——Tg(+, 0; s)+g(-, 0;s) 

pis)1* 
+g{-,lis)+g(+,l;s)l, (23a) 

and 
2TT 

<rpn = o-*p(s) = ——[g(+,0;s)+g(--,0]s) 

-g(-,l;s)-g(+,l;sn. (23b) 

I t should be remembered that Eqs. (22) and (23) are 
generally valid and are applicable at all energies. They 
may be particularly useful, however, in the high-energy 
region in which, as a rule, the theoretical emphasis is 
on the /-channel amplitudes of definite isospin and 
parity. 

The inversion of Eqs. (22) and (23) provides a set 
of four fundamental functions directly related to four 

3 D, H. Sharp and W. G. Wagner, Phys. Rev. 128, 2899 (1962). 

experimental quantities, namely, 

g(+, 0 ; j ) = [ p ( j ) 1 / 2 / 8 T ] [ o - p p + C T p n + ^ p + c r p n ] , 

g(—, 0;s) = £p(s)lf2/S7r'][,—o-pp--o-pn+(rpP+(Tpn], 

g(—, l;s)^[p(s)ll2/8w^[-(TpP+apn+(rpp-(Tpn], (24) 

g ( + , 1; s) = lp(s)ll2/S7r'][_(rpp—<Tpn+(TpP— o-pj . 

Once the energy dependence of the functions g(P,I; s) 
is known, these functions can be analyzed in terms of 
any specific model under consideration. The contri
bution of any model to g(P,I;s) can be obtained 
directly if it is expressed in terms of the quantum 
numbers of the / channel, or by an application of the 
known crossing matrices. 

III. AN EXAMPLE: APPLICATION 
TO THE REGGE MODEL 

We illustrate here the use of Eqs. (24) in the Regge 
model. As we have already mentioned, the / functions 
satisfy a Mandelstam representation, and therefore, 
the Froissart and Gribov analytic continuation can be 
defined on their partial waves. Here we shall, of course, 
be interested only in f2. From an equation similar to 
(4.25b) of Ref. 1 [written for the t channel and ab
sorbing a factor like (p/2E) into / n J ] , we obtain 

Mt;s)=it (2J+l)fn
J(t)Pj(Z), (25) 

where z= — 1 — 2s/(t—4w2). Because the signature is 
determined by parity, here the sum over / runs over 
even or odd values of / , depending on whether the 
parity of the state under consideration is even or odd. 
By application of the Sommerfeld-Watson transfor
mation, one obtains for each Regge pole a contribution 
of the form 

/ 2 ( ^ ) = / 3 ( 0 ( 2 a + l ) P a ( - « ) ( l + P ^ * « ) / s i n T O . (26) 

We write l3(t) = B(t)eiira, where B(t) is the modified 
residue and—as usual—B (t) is real below the threshold 
of the / channel. We have also, to a good approximation,4 

ei™Pa(-z) = Pa(z). (27) 

Further, at / = 0 , z=l+T/m. Thus Eq. (26) becomes 

f2(t = 0,s) = B(2a+l)Pa(l+T/ni)(l+Pe-i™)/ 
simra, (28) 

where a and B are evaluated at / = 0. Combining Eq. 
(28) with Eq. (20) of the previous section, we obtain 
the contribution of a Regge pole belonging to a given 
family of trajectories with quantum numbers P and 
/ ' to g(P,I'), as 

g(P,r;s) = BP,r(2aP,r+l)Papj,a+T/m). (29) 

4 Bateman Manuscript Project, edited by H. Erdelyi (McGraw-
Hill Book Company, Inc., New York, 1953), Vol. I, pp. 140 and 
164. 
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If several Regge poles with the same quantum numbers 
are considered, and if cuts and background integrals 
are included, then the g(P,I;s) represent the total 
contribution of the Regge family with the given P and 
/ . I t is only in the high energy region that Eq. (29) 
might be expected to be adequate with just the highest 
ranking trajectory included. 

The correspondence with the usual trajectory families 
is 

g ( + , 0) —> Pomeranchuk family, 

g(—, 0) —> o> family, 

g(-> 1) ~> p family, 
and 

g(+,l)-+R family. 

Note that of the twelve possible sets of trajectory 
quantum numbers for the NN system,2 only the above 
four contribute to / 2 and therefore to the total ^-channel 
cross sections. The R trajectory5 has not usually been 

6 A. Pignotti, Phys Rev. 134, B630 (1964); A. Ahmadzadeh, 
Phys. Rev. 134, B633 (1964). 

I. INTRODUCTION 

THIS experiment constitutes a portion of an ex
tensive study of the phenomenology of the ir—N 

interaction in the energy region above the well-known 
(f ,f) resonance occurring at the pion kinetic energy of 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

t Present address: Princeton University, Princeton, New Jersey. 
t Present address: University of Michigan, Ann Arbor 

Michigan. 
|Present address: University of Utah, Salt Lake City, Utah. 

included in Regge-pole analyses, as there is no known 
resonance with its quantum number, / (JPG) = 1 (/even+~) • 
However, in a systematic analysis it should be included, 
and Eqs. (24) would indicate whether its effect is 
negligible or not. 

IV. CONCLUSION 

The use of Eqs. (24) offers a simple and systematic 
scheme for analyzing theoretical models in terms of 
experimental total cross sections. The functions 
g(PJ;s), constructed from the experimental cross 
sections, have a fundamental physical significance 
because they are directly related to one of the 
NN —> NN spin-triplet amplitudes in a given state of 
parity P and isospin / . 

I t is hoped that the above-mentioned results will 
act as a spur toward the measurement of the pn or, 
equivalently, up total cross sections. 
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195 MeV (~1236-MeV total cm . energy for the w-N 
system). The features of outstanding interest are indi
cated by the cross-section variations displayed in Fig. 1, 
based on measurements by several experimental groups.1 

xSee for example: H. C. Burrowes, D. O. Caldwell, D. H. 
Frisch, D. A. Hill, D. M. Ritson, R. A. Schulter, and M. A. 
Wahlig, Phys. Rev. Letters 2, 119 (1959); T. J. Devlin, B. J. 
Moyer, and V. Perez-Mendez, Phys. Rev. 125, 690 (1962); 
J. C. Brisson, J. F. Detoeuf, P. Falk-Vairant, L. Van Rossum, 
and G. Valladas, Nuovo Cimento 19, 210 (1961); M. J. Longo, 
J. A. Helland, VV. N. Hess, B. J. Mover, and V. Perez-Mendez, 
Phys. Rev. Letters 3, 568 (1959). 
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Elastic Scattering of Positive Pions by Protons in the 
Energy Range 500-1600 MeV* 

JEROME A. HELLAND, THOMAS J. DEVLIN,! DONALD E. HAGGE, MICHAEL J. LONGO,J 
BURTON J. MOYER, AND CALVIN D. WOOD§ 

Lawrence Radiation Laboratory, University of California, Berkeley, California 
(Received 13 January 1964) 

Differential cross sections for the elastic scattering of positive pi mesons by protons were measured at the 
Berkeley Bevatron at pion laboratory kinetic energies between 500 and 1600 MeV. Fifty scintillation 
counters and a matrix coincidence system were used to identify incoming pions and detect the recoil proton 
and pion companions. Results were fitted with a power series in the cosine of the center-of-mass scattering 
angle, and total elastic cross sections were obtained by integrating under the fitted curves. The coefficients 
of the cosine series are displayed, plotted versus the laboratory kinetic energy of the pion. The most striking 
features of these curves are the large positive value of the coefficient of cos60*, and the large negative value of 
the coefficient of cos40*, both of which maximize in the vicinity of the 1350-MeV peak in the total cross 
section. These results indicate that the most predominant state contributing to the scattering at the 1350-
MeV peak has total angular momentum / = \, since the coefficients for terms above cos60* are negligible 
at this energy. One possible explanation is that the 1350-MeV peak is the result of an F7/2 resonance lying 
on the same Regge-pole trajectory as the (f ,§) resonance near 195 MeV. 


